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ABSTRACT

The analytical modolling of creep re sponse phenomena of intervertebral discs

subjected to a constan t axial compre ssive load is atte mpted ~y using Kolvin—solid

models. A mathematical analy sis scheme is propo sed for unique model idsntUjcatto n

wherein exact para meter solution s are developed for the one—Kelvin —unit model , the

three—parameter—so lid model , and the two—Kelvin-unit model. In additio n , a metho d

is presented by which the associated Young ’s moduli and viecosity coefficient s for

an identified model are obtainab’ - . Moot importantly, unique para meter values are

obtained for the three—parameter—so lid by utilising exact model parameter solution s

on exper imental strain , E ( t ) ,  da ta . This particular model is observed to yield

theor etical strain , E (t)caii values tha t are within an average error of 3.48% of

the exper imentally measured values, E ( t )~xp~ for different intervertebral discs.

Further, mechanical properties of the inte rvertebral discs are obtained by using

the values of the three—parameter—solid model parameters to calculate the asso-

ciated Young ’ s moduli and viscosity coefficient. The appropriate applications,

data limitations, and possible gcner a.lizat ions of this exact analysis scheme are

fully discussed, along with sugge stions for future investigatory effo rts ,
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INTRODUCTI ON 
-

An understanding of the mechan.tcal properties and behavior of the spinal col—

u i  is of general interest to reacarchur s in many areas, ranging from problems as—

ociatod with the man—machine environmeLts in which man is subje cted to external

dynamic forces to those encounterod in the selection of suitable materials for in—

tervortobral disc replacement. Of particular interest to this investigation is the

biomochanical modelling of intervertebral joint response to constant axial compres-

eivo loads, where an intervertebral joint is understood to be an intervertebral

disc and adjoining vertebrae. 
- -

Nachem son (1960), Hirsch (1965) , and Roland er (1966) performed exper imental

investigations to determine the load—deflection behavior of the intervertebral disc

subjected to axial loading. More recent ly, Kazarian ( 1975) reported creep charac-

teristics for intervertebral joint s subjected to a constant axial stress , and

Kazarian and Kaleps (1979) illustrated the determination of Young ’s moduli and a

viscosity coefficiont for a three—parameter— solid model ba sed on this data .

A basic problem associate d with the modelling of experimental compressive creep

data is the identification of the most physically appropriate and analytically

uniquo mode].. A lumped—parameter model consisting of a number of Kelvin solids in

serie s may be sufficient in simulating experimentally observed creep phenomena.

‘1 However , the number of Kelvin solids represented in such a model is general ly de-

pendent on the analytical and physical intuition of the investigator and his vii—

lin~~oes and capability of identifyin g the values of un~cnown , independent model

parameters via opt imization techniques using the availabl , experimental data .

On. objective of thi s continuing research is to replace investigative intu-

ition with analytical certitude in model identification. The exact mathematical

solutions to a logical progression of mochanical models that are appropriate for

experiment al creep data analysis are presented and fully discussed. Due to the

inherent mathe matical complexity of the sxact solution approach to model identi-

fication for a Kelvin chain consisting of mor e than three Kelvin aolids, approx—

Smatin~ solutiona appear warranted for the genera1~znd basic prob 1em.~ Thn 
~~~~~~~~~~
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presented herein for three different analytical models can be easily programed on

a digital computer to test experimentally measured creep data for unique model

identification and to calculat e the aesociated Young ’s moduli and viscosity coef-

ficients for an identified model.

ON MODELLING COMPRESSIVE CR~~P PHENOMENA 1~ITh 1~ LVIU SOLIDS

Typical experimental compressive creep data of strain G ( t ) ,  as illustrated

by the dotted curve in Fig. 1 after Kazarian (1975), exhibits behavior which is

similar to that of a Kelvin solid, where a one—Kelvin—unit solid is understood to

be a sprin g and d&shpot in parallel. Indeed , it is bein g suggested that a Kelvin

chain , consisting of two or more Ke lvin element s connected in series , might be

sufficient to simulate compressive creep phenome na . The problem , of course , is to

identify the minimum number of Kelvin units in the chain and to deter mine the in-

dependent parameter values associated with each Kelvin elem3nt , such that the pre—

dicted strai n values of the Kelvin chain model ar e in good agree ment with avail-

able experimental creep data ,

The general solution for the strain behavior of an N—Kelvin—unit solid is

given by Flt~ggo (1975) as
N — ; t t

€ ( t )  : Z A 1 _ e  1 ), (1)
1:1

o which would appear to be a logical test of the experimental compressive creep data,

When a computerized optimization scheme employing ~q. 1 was app lied to Kazarian ’s

creep data for the T4 — T5 inter vertebral joint, one value of N yielding a “rea

sonably” good fit occured for N = 5. A plot of the calculated strain 6
value s using a five-Kelvin-unit model is illustrated in Fig. 1 by a solid line.

Clearly, after the first few minutes , the experiment ally observed strain response

is rather well predicted by ths five—Kelvin—unit model. Although this result ap-

pears encourag ing, further investigat ion revealed that the value s used for the ten

parameter. ( ? ~ , £1; i = 1, 2, 3, 4, 5) were ~~~ unique. That is, these value s

could be altered slightly, or even dra stically, with a resulting “reasonably good

4-
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fit ” to the experimental creep re sponse data . This alarming observation sugg ts

that another model, perhaps simpler, might yield a unique fit to the experimental

data . Once this modelling uncertaint y -wa s realized, no further effort was made to

improve the optimization scheme used to identify the para meter values with re~?ect

to the exper imental data . Further , it is suggested that the use of such a model ,

although instructive , is of que stionable value . It is general ly felt that “gue s-

sing” at. parameter values, which is inherent in any computerized optimization

scheme , should be avoided , if at all possible.

From thi s prelim inary modelling atte mpt , the assumptio n that a Kelvin chain

might be sufficient in simulatin g compressive creep response of interverteb ral

discs appeared reasonable . The immediate task was to uniquely identi fy the appro-

priat e ntnn ber of Kelvin elements in the Kelvin chain and the model paramete r values

by a more exact matheziatical method. To this cnd, an analy tical scheme is proposed

where in exact parameter solut ions are derive d for a few illust rative models. lb be

more spccitic, exact parameter solutions aro developed for the one—Kelv in—unit

model , the three—parameter— solid model, and the two—Kelvin— un it model , along with a

discussion of their app rop riate app lications and limitations when used to analyze

experimental strain data .

EXACT PARAMETER SOLUTIONS TO ThE ONE-KELVIN-UNIT MODEL

The one—Kelvin—unit model, schematically repre sented ira Fig. 2, is a linear

model, since the strain behavior is directly proportional to the applied stress.

Taking E1 and as representing Youn g’ s modulus and the coefficient of viscosity,

respective ly, the total stress app lied, t7 , can be expressed by

r E1e + z q~~ — q1~ , (2)

where the dot denot es time—differentiation and the second q~a.lity is just the

standard fo rm for the total stre sa. and fl 1 are related to the unit elasticity ,

and damping coefficient , C1, by the equations

(3)

and ~~~~~~ 
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~ 
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whore is the initial length and A is the effective cross—sectional area of the

apecimer~. For a constant stress

(5)

the solution for the strain, E ( t ) ,  to the conetituti ve equation , Eq. 2, under the
condition of creep may be expressed by

= ~~ J( t ) ,  (6)

where J(t) is the creep compliance. According to Fliigge ( 1975), the creep compli-

ance for thi s model is given by

J(t) (l/% )(l — e~~~l~), ( 7)
where the parameter is

: q0/q1. (8)

Combinin g Eqs. 6 and 7, the solution for the strain beha vior of the Kelvin soUd

can be represented in the general form

~~(t )  A1(l — e
_
~ l.t ), (

~
)

where and A1 are independent parameters requirin g determination for the com-

plete specification of ~ ( t ) .  At this point , using Eqs . 3, 6, 7, 8, and 9, it is

easily shown that

~ ~~/A1 (10)

and f l1 = p0/ 9..1A1. (11)

Cicarly, Eqs. 10 and 11 can be utilized in determing Young’ s modulus, L~, and the

viscosity coefficient , ?(
~
, once unique values for the parameters 

~~ 
and A~ are

obtained.

Assuming thi s simple model can be used to analyze observed compressive :reep

phenomena, then the experimental data for 6 (t)  and t may be expressed in the form

A1(l — e ~~~tj) (12.1) 
-

6i.l = A1(1 — 0
.~~lti+l), (12.2)

Even though these two equations involve only the two unlaaown parameters 
~ 

and

4 A~, their exact solution is not trivial , unless vs use an “interpolation trick’.

•

~

•

F -  ~~~~~~—:i--:i~ ~~~~~~ _ _;
~~~~



That is, interpolation of the physical data can always be acco~ipUshed such that

t
i,l

t
i

t
i+2

t
i~l

t
i~fl

t
i~(C_l):~~~~

, (13)

where ‘
~~~ is a “ small time increment”. Using the requirement of Eq. 13 with Eqs.

12.1 and 12.2 and genera lizing yields

— Gi :A 10 Xlti(l — e~~~1’
~~), (1.4.1)

— : A1o ~ ].ti(l — e ‘~1~~ )e 4
~12’

, (14.2)

where the left—hand— aide of each equation represent s the difference between two con-

secutive exper imental strain values. The exact solutions for the model parameters

and A1 are imnediately obtained in ter ms of the experimental strain data by si-

multaneously solving Eqs. 14.1 and 14.2:

~i
: ( 1/’~~)ln( ( ~~~ — E~) I( 

~~~~~~~~~~ 

— 

~~~~~~~~~~~~~~~~~ 
(15)

A1 ~ 
( 

~~j ~ i+2 
— E i+1~”~ 

E~ — 2 + 
~~~~~ 

(16)

It should be empha sized that the model parameter solut ions of Eqs. 15 and 16 arc

depend ent on only the experi mentally obtained strain , C- ( t ),  data and can be easily

employed by a simple computer program to analyz. ouch data . If indeed thi s model is

approp riat e for the analysis of any typo of experimental strain data, then Eqs. 10

and U can be uti lized to predict the mechanical properties. Unfortunately, when

this simple model was used with th e exper imental strain data of Kazarian (1975), no

unique values for and Li were realized. A minimization scheme using the exact

parameter solutions of Eqs. 15 and 16 could be deve loped for a more complete ana lysis

of the exper imental data ; however, the characteri stics of the Kazarian ( 1975) creep

responco data sugge st s that a more complex model is requi red . Since the experimental

data graphed in Fig. 1 reveal s an elastic response initially, followed by a visco—

elastic response, then perhaps a spring placed in series with a Kelvin unit would be

ppropriate as the next model to investigate.

EXAC T SOLUTI ONS TO W~E ThREE-PARAMEThR-SOLID MODEL

A three-paraetcter— oolid model i~ illustrated in Fig. 3 as a Kelvin unit and

L _  
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-

_
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spring connected in tori es. Allowing that 7/i, E~, and E2 are related to c1, Ic1,
and k2, respectively, by equations oi.’nilar to Eq s. 3 and 4, then the constituti ve

equation for the total stress applied can be dori ved in the form

r÷ ( fl1/(E1 .1. E~ )) & ~ (E1z2/(E1 
.,. 32))E + ( f l 1E2/(E1 + E2))6, (17)

where the dot denotes time—differentiation. Eq. 17 can be written in the normalized

form as given by F33~ggo ( 1975),

(18)

by simply defining

p1 ~ s E2), (19)

+ E2), (20)

q1 s )11E2/(E1 ~
• z2) .  (21)

The general solution for the strain of Eq. 18 is again rep resented by Eq. 6, only

now the creep compliance , as given by Fliigge ( 1975), is

J(t) (1/q0)(1 — 0
_
~ ••t ) ~~. (p1/q1)0 Lt , (22)

with ( 23)

Fro m Eqs. 6 and 22, a general form for the strain solution can be expressed by

E ( t)  A1(1 — e alt ) A2e ~~~ (~j~)

where the model parameters X1, A1, and A2 are given by

a1 ~ q0/q1, (25)

A1 ç/q0, (26 )

£2 rp 1/q1. (27)

Using these three equations with Eqs. 19, 20, and 23. allows for the determination

of Young ’ s moduli, E1 and E2, and the viscosity coefficient, 7’~~, in terms of the

unknown model para meters:

4 = 0 /(A1 — £2), (28)

E2~~~Q~/A2, (29 )

~~~~~~ ‘4
’ 
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~~ 
- A2) E1/~~1. (30)

As before , values for the model parameter s must be uniquely determined by analyzing

the exper imentally ava ilablo strain data .

Using Eq. 24 as the model “data equation ” , then any thre e consecutive strain

data values obeyin g the interpolation requirement of Eq. 13 can be represented by

A1(l — e~~~lti) 9. A2e~~~1ti, (31.1)

A1(1 — ~ 
2
~ltie ~‘l

’
~~) + £20 ~1tie

_ ‘~l~~ (31.2)

E~ 2 A1(l — e X1tj0—2 ~~l~~) + A2e ~ 1t j0 2 
~~~~~~~~~~ (31.3)

Exact solutions for the three model parameters are now obtainable in terms of the ex-

perimental strain data by solving the above three—equations simultaneo usly. The

result s for and A1 are identical to tho se given by Eqs. 15 and 16, respectively ,

and £2 can be expressed by

A2 -. (~ j - A1(1 - o
_
~~lti))e alti (32)

Kazarian and Kaleps (1979) recently analyzed compressive creep phenomona using

a three-parameter— solid model describe d by an equation like Eq . 21k. Their results

for the Young ’s moduli and the coefficient of viscosity for a tow intervertebral

joint s are given in Table 1 as Z~, E~~, and ?Z~. By their analysis scheme , which em-

ployed various approx imations and opt imizat iQrt schemes, the predicted strain value s,

E~(ti)
cai~ compared favorably with the experimental strain data , € (tj)~xp~ ranging

from about 1% to 15% with about a 5% average .

When the exact parameter solutions developed herein were employed to analyze

the Kazarian (1975) data , unique parameter values were obtained for the in .erverte—

bral joint s considered in Table 1. The results for the Young ’ s moduli and the vis-

cosity coefficient are indicated in Table 1 as E~, E2, and and agree favorably

with the results predicted by Kar .arian and Kaleps ( 1979). When the first three ex-

perimental strain valu es (elastic re sponse) are eliminated from the data points as-

sociated with each spinal se~ nent , the exact ana lysis scheme predicts strain values ,

_ _ _  

0•



C (t~ )~~~ , that are within an average of 3.48 % of the experimenta l data , ~ ~~i~e.xp’
for the twenty spinal segments consict ered. For each spinal segment considered , the

“average of the absolute % error , i,” is defined by

£ ~ ( h/N)Z ABSI( ( E ( t i)cxp — E ( t i) cai) / E ( t i)
.xp)(3~0

2)j~ (33)

and is observed to be rath er ~~~~~ with the exception of test I . D. No. 1 and 16.

With those two spinal segment s olixzinated , the predicted strain value s, € (t j ) cai~
are within an average erro r of 2.21 % of the experi mental data , € ~~~~~~~ for the

remaining eighteen spinal aegmenta. For these interve rtebral jo ints, a grap h of

strain versu s tinn for ~ (tj )~ai will be , essentiall y, superi mposed on the corres-

ponding grap h of € (t i)cxp~ except for , app ro~d mate1y, the first t hre e strain values.

Inclusion of the first three predicted strain values for each spinal segment

result s in an average discr epancy of 8% between € (t~ )~~1 and £ (t i) for the

twenty intervertebral joint s of Table 1. It should be noted that the exact param-

eter solution s are ~~~ sensitive to the experimental strain values and, thus,

critically dependent on the smoothin g and interpolation programs employed to reduce

the original data. Certainly , an optimization scheme ut ilizing calculated param-

eter values could be developed for a more complete analysis of the exper imental

data , in an attempt to obtain closer agreement between 6 (t j) cal and ~ (t i) for

the first three data point s of each intervertebral joint . Howe ver , the compre ssive

creep datu m ana lyzed tends to suggest that a slightly more complex model may be

required for improved agreement between theoretical and experimental predictions .

EXAC T PARAMEThR SOLUTIONS TO ThE TiiO-KELVIN-UNI T MODEL

The constituti ve equat ion for the two—Kelvin—unit solid, as illustrated in

Fig. 4, can be expressed in the normalized form as

r. p1d ~q0E ~ q1È ÷ q2C , (34)

wher e the dot denotes t ime—differentiation. The streSs and strain coefficients of

Eq. 34 are related to Youn g’s moduli, E1 and E2, arid the viscosity coefficient s,

4 and 
~~~ 

by the following equations:

LI ~~~~~~~~ 
.
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p1 (
~~~~

?
~~~ ÷ )j2)/(E1 + E2), (35)

+ 1~J2), (36)

q1 ~~~l
1
~2 + ~~2E1)/ (E

1 
p £2),

q2 fl1fl 2/(E1 I. £2). (38)

The general solution to Eq. 34 for the strain, as given by FlU ggo (1975), is

~ (t ) ~~J(t) ç(1 + p1~1)(l — e
_
~1
t
)/q~~i(2.2 —

~
. 0 ( 1  .

~
- p1~~ )(l — e

_
~ 2t )/q2~~ ( L1 — X~), (39 )

where and are the roots of

q2~
2 

— q1~ ~ q0 = 0. (40)

Taking t~ as the negative root and 
~2 as the po sitive root of Eq. 40, and

r (l  ~~ p1a1)~’q2~1~~2 
— 

~~ (41)

A2 ~~(l + p1~2)/q2 (i1 
— ?.2)I (42 )

then the general solution for the strain behavior can be expressed by

E (t) A1(l - e41t ) + A2(l - e~~2t ) . (43)

Young’s moduli and the vi sco sity coefficient s can be related to the four parameter s

ob Eq. 43 by using Eqs. 35, 36, 37, 38, 40, 4.1, and 4.2:

E1 — 

~‘l~~~~1~~l 
+ k2) + 2A2~~ ), (4j~)

L2 Q ( ~~ — )/( A2(,~~ + 2.~
) + zY’~, (

~~
)

fl
1 

Ei/?..i, (46)

fl2 ~~ 21%1

Again, values for the four model para meters must be uniquely identified by analyzing

the experimentally obtained compressive creep data.

Taking Eq. 43 as representative of the “ experimental data ” , then the four data

equations necessary for the exact solution of the modal parameters arc of the form

4
. 

.

.

-
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-
~~~~

E 
~~~~~~~ 

- 6 A1(l - e~~~~ )e4lt i + A2(i - e~~~~ )e~~~
ti, (48.1

— j +3 A1(l — e_hi
~ )e~~1

tie_$1’
~ + A2(l — e 2~ )e 2tie

_3
~2’

~,(4g.I4

where the “time interval” requirement of Eq. 13 has been incorporated, Solving Eqs.

48.1 to 48.4 simultaneously and defining

€ 

~~ 
— 

i+(j—1)’ j = 1, 2, 3, 4, (49 )

gives the parameter solutions in the fo rm

~ f F ~~~~~~~

A ‘~ 
- e ) - - C

1 Q X t ~~-~ (C) ( 1 A2~t c )  - ( 1  - e ”~ J ( i - e~~
t
~ e~~ ’~

)
_ X~t~ .X~~’

— ~~C i - e  e - 6 ~ + , ( 1 — c  I
— 

(~~ 
- ~~~~~~ 

~ ~~~~~~~~~~ 
(e  

~~~~~ 
— 

(~~ 
- ~~

-X i t~~)( - ~~ & 

( 51)

0 
~~~t2 — E~ 1E . 3

)& 2~~~i. (E . 1E~44 — E~~2E~ 3
) O~~~ + (E~~3 

— E~~2E~~4
),(52)

where is the rAogativa root and is the positive root of ~q. 52.

When the co pre~ sivo creep data of Kazarian ( 1975) was analyzed by the above

parameter equations, rio unique sot of values for A~, 
)
~ , A1, and A2 was obtained.

Some calculated value s appeared repetitively as the experimental data was tested,

but it. was riot possible to identify a “unique set” of parameter values for any

intervertebral joint . As such, use of the two—Kelvin—unit solid as an analytical

model was seriously questioned.

CONCLUSI ON

The analytical modelling of compro asivo creep data by Ke1v~n solids has been

considered. Unique model parameter solutions are accomplithe d by a mathe matical

scheme, whIch has beon fully illustrated for the two , three, and four—parameter

eolids. The first and last models discussed are not capable , by themse lves, of

predicting observed comprossive creep phenomena ; however, s~zcceaa ful modelling of

the experimental data appears po ssible by using the three—p~rameter-.solid model or

‘
4 
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~

more complex Kelvin chains. Noro precisely , th e five—par amo t .er— solid model is sug-

gested as the next logical model to o~velop. It is expected to yield a better fit

to the experimental compressive creep data for the entire time—domain than the three—

parameter— solid model. Exact parameter oolutions , of the type discussed herein ,

have not been obtained for a Kelvin chain consisting of three or more Kelvin elements.

it is suggested that any such derivational attozrpts will be intimidated by the math-

ematical complexity and uncert ainty arising from the algebraic solutions. It should,

however, be possible to develop a generalized approximating scheme, utilizing the

equations presented herein, which is capable of identifying a unique model for the

prediction of compres sive creep re sponse . Further , it should be realized that ox—

porimontal data analyzed by this type of method should be care fully smoothed and in-

terpolated, because of the sensitivity of the equations representin g the exact so-

lutions for the model paramaters .

The implications of thi s report are that with improved computer programs per-

taining to interpolation, ~m~oothing, and analysis models ( development of the five—

parameter—solid zxdol), all of Dr. Leon E. Ka~arian ’s experimental data on the load—

deflection behavior of intervertebral joints can be quickly, efficiently, and ac-

curately reduced via exact parametric solutions, with associated Young’s moduli and

viscosity coefficients obtained. Such an accomplishment would represent the most

authorative research results on intervertebral joints to date and should become the

primary reference for investigators associated with problems ran ging from the man—

mach ine environments to those encountered in the selection of suitable materials

for disc replacement .
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Figure l

A compari son of the exper imental compressive creep re sponse
for the human T4 — T5 interve rtebral joint , by Kazarian, with
the predictions of a 5—Kelvin—unit model, by Burns and Kalcps.
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Figure 2

The one-k~e1vin—unit solid.
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Figure 3

The three-parameter solid.
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Figure 4

The two—Kelvin—unit solid .
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Table 1

A comparison of the Kazarian and Kalep s ( 1979) Youn g ’s moduli
(Er , E~) and vi scosity coeffi cient (1j~ ) for intervert ebral
joint s is mado with tho se predicted by Burn s and Ka leps and
repre sented by E1, E2, 7~~, re spective ly. A coi~~arison of the
predicted strain value s, ~ (tj ) cai~ of the Burn s and Kalepa
exact analysi s scheme with the strain values obtained experi-
ment ally, € (tj )~ xp~ by Kazarian ( 1975) is represented as an
“averag e of the abso lute % error ”, where the fir st three strain
data values for each intervertebral jo int has been elixninat~d.



r _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _ _ _

—4
~~~~~~ 0 0N ‘~ ‘0 (~\ N

0 ‘0 -* t- ,-4 ~1\ C~ 4 ‘.0 ~ % 
‘0 N H 0 03 0
N II\ V’~ ~~ a’

.4 (‘4 N N N s-i ri f~\ 4 i-i N p-i ~~\ i-I i-i ri
. . S ~ • ~ . . S • S S ~ • S S ~ • •

.
~~

.4

~4~~~~~IC 01 ‘.0 N v~ sr., o a’ ~~ 03 v-I N ~~ .4 i~~ N 14% ‘0 i-I ~-4
L~ ~~l a.i 0 0’ ‘-4 0’. (7’ N g ~~ C— N 0’ C— U) U)
~~ 0 I v-I v-i3 ~t(

•
~~

• a ’ ‘.o
0 a’ 03 ,-I ‘— ~ \ ‘0 N C’\ 0 C— t- r~ ~~ 03 a ’ .4I) v-I Q’ .4 %C% (‘•\ ~Z) ‘.0 03 U~ -4 N v-I 0’ v-I U ’  ~~‘. 03 N 0 4 ~~‘

~3r~
1 • S I S I I • S S S ~ • S S S S • • S

v-i p 4 v-i r-I N (‘4 N (1-b v-f ‘0 ‘.0 ri H (‘4 (‘4

03 0’ U\ ~A .4 sO0-. N o ‘0 ‘0 0 a) .400 ‘0 03
t” v~~ *H H it ’. CO (0 0) N ‘.A 0 0’ 0) ‘.0 ?I\ U’ ‘.0 a ’ N

• I I ~ • I S S S S • I S S • • S ~ I ~v-I (‘
~ (‘4 r4 v-I (‘4 H H (‘4 rI

-4 -4 0’ N (‘4 03 N C-- 0~ 03 (‘\ .4 .—
~ ‘-IN ‘6 0 C— ~t\ (‘4 .4 ‘0 (‘4 .4 C-- C-- (7’ (‘- ‘4~ U~ a’ C-- 0” (‘4

I S S • • 0 I S S I • 0 5 5 S ~ S ~ ~ I
(‘4 (‘4 C’\ N v-I (‘4 (‘1 (‘4 .4 H U~ (‘4 H H ri

0If ~ C1-~ .4 0 U~ C~- 0 N .4 ‘0 a ’ 0 0’ ~~ ‘0 .4 0’ -4 C—
~ *C’4 N C”\ ~ \ 0) ‘0 C~~ ‘0 a’. H -4 C- ‘4” ‘A (‘4 ‘.0 (‘4 c~ ~~ -.~~ u~

~r 
~ . S S S S S S • S • • • ICv~ N (‘\ (~\ H (‘4 N C’~ v-I ‘.0 (‘4 ‘.0 c~\ ,-I (‘I H H v-I

__r

~ 

I 
0’ 0’. v-f v-I ri U) N v-I ‘0 N ‘0 ~v-I e~ 4 0 0 H N 0’ C- (0 N 4 I~ \ U) ~1’ 0-’. H 0 a’ N• . . S S S ~ S ~ S • S ~ S S S • • I 1

v-I ~~ ‘0 (‘4 H H H H .-4 (‘4 H ‘0 ,-4 s-I H v-I N

N a )  ~~~~~~ 9~~~~H 0’03 (0 
~
- .4 0) (5\ 0 H 0 C- 0’ (0 (‘4

S I ~ S ~ S S • ~ S S S 5 0 5 S ~ S ~H N ~~~~ H v-I (‘4 v-i ri (‘4 H 4 ,-4 v-I v-I

U) 0’ ~~ .4 it.. ‘0 “- 03
P ~-. ~~ ~~ ~~

I I I I I I I I I I I $ I I I I I I I I

SI

s-i (‘4 4 W~ ~O C- 03 0’ 0 ‘.0 C-C . 1  i—I H H ~~ ~~ 
(‘4 

~~ 4 it.. ‘.0N (‘4 (‘4 (‘4 N
II

‘4

_ _  _ _ _  

p
.

~~~~~~~~~~~~~~~~~~~~ 
—i

~~~~~~
-- . ~~~~~~~~~~~~ -:•:: - • _ 

—



-
~~~~~~ 
- 

~~--~~~~~~~~~~ -.

~~~- 4 O  /0 s~~~~-/.-~’ - —

SE U n i T y  CL ASSdF I C  S I a N  OF  T N S PA n E  ( so L)a’r ? ,asred)

4’ - 

~~~CRT DOCUMENTATION PAGE ,~~~. , C
I
(~~~~~~~~~~~

N
,~~ RM

I -  R E P O R T  N ______ -
~~~~~~~~~~~~~~~ 2 . GOVT A CCESSION NO. 3. R E C I P I E N T ’ S  C A T A L O G  NUMI3ER

• 7 9- G 7 9 5’ ) ~~ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _

4. T I T L E  (an d s.Thii :.T~~ 5. T Y P E  OF REPORT & PER& OD COVER ED 
_-— ——.~~~~~~~~~ - -~~~~~ ~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~ \ Final ~
~~ ~~NALYTTCAL ~OI)ELLING OF ~ OAD—~~ FLECT ION ~EHAV IOR ~~ 1 Apri+~1~~7l—3l May ~~79

OF INTERVERTEBRA L DISCS SUBJECTED TO AXIAL 6. PER F ORM ING ORG . ~L~C~ T ~~~~~~ -

COMPRESSION ~ -- - #Au~~0RraT - 8. C O N T R A C T  OR G R A N T  NU MBER( S )

— /
/ 

- k’ AFOSR—78—357~ ’Marshall L .iBurr is /
I i ’ - ... 

—

-
, 

9. P E R F O R M I N G  O R G A N I Z A T I O N  N A M E  AND A D D R E S S  IC. P R O G R A M  E L E M E N T . PROJE CT . T A SK
A R E A  & W O R K  UN IT N U M B E R S

• Tuskegee Institute - -
Liepartment of Ph y sics’  61102F
Tuskegee , A l a b a m a  36088 231209

I t  C O N T R O L L I N G  O F F I C E  N A M E  A ND A D D R E S S  *2 . R~~~OPT eATs  -

I ‘7 31 May ~ 79J
Air Force O ffice of Scientific Research (NL) ‘-—- -~~ ~~~- ~~~~~~~~~~~~~~~~~~~ /Boiling Air Force Base DC 20332 23

14 M O N I T O R I N G  A G E N C Y  N A M E  & A D DR E S S ( , l  d:lfeeara Ir o,n Conl ,o l l i r ,~ O(I.ce) 5 . S E C U R I T Y  CLASS.  (of  Ih,s ep ,rt)

Unclassified 
—______

ISa . D E C L A S S I F I C A T I O N  D O W N G R A D I N G
S C H E D U L E

l6. DI~~TRI9UT ION S T A T E M E N T  (of th,o Report)

Approved f o r  public release; distribution unlimited.

17. D I S T R I B U T I O N  S T A T E M E N T  (of l b s  abs tr act  er ,te,ed in Block 20 , if di f fe rent Iron, Report)

18 S U P P L E M E N T A R Y  N O T E S

19 K EY W O R DS  (C.~nti n. e on reve r s e  .~‘j e  1 nec sssry and l d e , , t I f s  by blo c k r~~e’

A B S T R A C T  (CnnhIn,,e On Pt , -r r s. .  ‘ r i o  if neces s a r y  and Ide n t i f y  I v  b l o c k  ,n m ,-?- e r r

The anal ytical modelling of creep response phenon-’~na of intervertebral discs
s u b j e c t e d  to a constant a x i a l  compres s ive  load is a t t e m p t e d  by using Kelvin—
solid models. A mathematical anal ysis scheme is proposed for uni que model
identification wherein exact parameter solutions are developed for t h e  one—
Kelvin—unit model , the three—p arameter —solid model , and the two—Kelvin—unit
model. In addition , a method is presented by which the associated Young ’s
moduli a n d  viscosit y coefficients for an identified model are obtainable.
Most importan tl y ,  uni que parameter values arc obtained for the three—parameter—

1 j A N 73 1473 
- 

/ , , 
_ _ _ _ _ _  

UN CI. ASS T F I E E ,
—~~ ~ r r I ~~~~ rv  c s - ’ . 5 ,— ’ N “5 ,.r c e’sr. r I~’.. ‘i,~~~ 

m nte ,.5d1

_____ 

I ,.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
— 

_ _ _ _  

— —  — _i
— .-i--:-::-_ ~~~- ~~~ 

,~~~~~~~~~~~~~~ Stttp~~~~~~~~iT’.* ~~ ________ ‘-.5 . .- . w,. s~~ &a, . • ~~-à. ‘ 
- .

~~



_ _ _ _ _ _  _ _ _ _ _ _ _ _  - _ _ _ _ _

I~ .sk I~~~ ’~~) I i

~E C U P~~ C L A S S I F I C A T I O N  OF T H I S  PAG E(Wh en  Pats EnSereii)

4...olid by utilizing exact model parameter solutions on experimental strain ,
E ( t ) ,  data. This particular model is observed to yield theoretical
strain , E ( t )~7j ’. values that are within an average error of 3.487~ of
the experimentally measured values, E (t)~~ 7J, for different intervertebral
discs. Further , mechanical properties of the intervertebral discs ,ir~
obtained by using the values of t h e  three—parameter—solid model f t i w L c rs
to calculate the associated Young ’s modu li and viscosity coefii.. ent. The
appropriate app lications , data limitations , and possible generalizations
of this exact anal ysis scheme ace full y discussed , along with suggestions
for future investigatory efforts.
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